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The Heat Transport in Nanofluids:
a Theoretical Approach Through the Fractal Theories
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A mathematical model of the heat transport in nanofluids using the fractal theories (the scale relativity
theory in the topological dimension DT = 2) is established. Through a scale covariance form of the Newton’s
equation, a Navier-Stokes type equation with an imaginary viscosity coefficient and particularly a
Schrödinger’s type equation are obtained. Some applications of the model are given like the heat transport
through an effective thermal conductivity, by Brownian motion or by liquid layering at liquid-nanoparticle
interface. It results that the heat transport in nanofluids is performed through an unique mechanism, the
above standard sequences mentioned being imposed by the interaction scales. Moreover, the quantum
thermal conductance of electrons in an one-dimensional wire is obtained.
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Nanofluid is a new kind of heat transfer medium
containing nanoparticles which are uniformly and stable
distributed in a base fluid. Experiments on nanofluids have
demonstrated that the thermal conductivity increases with
grain size decreasing [1-4]. Keblinski et al [4] have
examined four possible mechanisms for the anomalous
enhancement observed in nanofluids: Brownian motion
of the nanoparticles[5-7], molecular-level layering of the
liquid at the liquid-nanoparticles interface [8], the effects
of nanoparticle clustering [9], and balistic phonons
transport [4].

Recently, the increasing of the heat transfer in nanofluids
was related to the fractalic effects [10, 11]. Moreover, Wang
et al. [12] reported that the modified fractal model agreed
well with the experimental data obtained for the SiO2/
ethanol nanofluid. In such conjecture, the fractal theories
(particularly the scale relativity theory (SRT) [13, 14]) is a
new approach to understand quantum mechanics, and
furthermore physical domains involving scale laws, such
as the nanosystems [15, 16]. It is based on a generalization
of Einstein’s principle of relativity to scale transformations.
Namely, one redefines space-time resolutions as
characterizing the state of scale of reference systems, in
the same way as velocity characterizes their state of
motion. Then it requires that the laws of physics apply
whatever the state of the reference system, of motion
(principle of motion-relativity) and of scale (principle of
SRT). The principle of SRT is mathematically achieved by
the principle of scale-covariance, requiring that the
equations of physics keep their simplest form under
transformations of resolution. For example, considering
that the motion of micro-particles take place on continuous
but non-differentiable curves, i.e. on fractals [13, 14], it was
demonstrated that, in the topological dimension [17] DT=2,
the geodesics of the fractal space-time are given by a
Schrödinger’s type equation.

In the present paper, using the SRT, we propose a new
mechanism capable to explain the experimentally
observed enhanced thermal conductivity of nanofluids. In
such conjecture, the heat transport through an effective
thermal conductivity, by Brownian motion or by liquid

layering at liquid-nanoparticle interface is performed
through an unique mechanism imposed by the interaction
scales.

Theoretical part
Mathematical model

A non-differentiable continuum is necessarily fractal and
the trajectories in such a space (or space-time) own (at
least) the following three properties:

- the test particle can follow an infinity of potential
trajectories: this leads  to the use of  a fluid-like description;

-  the geometry of each trajectory is fractal (of dimension
2 – for other details on the fractal dimension see [17]).
Each elementary displacement is then described in terms
of the sum, dX = dx + dζ, of a mean classical displacement
dx = vdt and of a fractal fluctuation dζ, whose behavior
satisfies the principle of SRT (in its simplest Galilean
version). Hence  〈dζ〉 =0  and   〈dζ2〉=Ddt  where  D defines
the fractal/non-fractal transition, i.e. the transition from the
explicit scale dependence to scale independence and c is
the light speed in vacuum. The existence of this fluctuation
implies introducing new third order terms in the differential
equation of motion;

- time reversibility is broken at the infinitesimal level:
this can be described in terms of a two-valuedness of the
velocity vector for which we use a complex representation,

. We denoted ν+ the “forward”
speed and ν-  the “backward” speed.

These three effects can be combined to construct a
complex time-derivative operator.

                                                                    (1)

Now, the first Newton’s principle in its covariant form
δV / dt = 0, becomes.

                                                   (2)

i.e. a Navier-Stokes type equation in a fractal space-time.
This means that, both for the differential scale and the
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fractal one, the complex acceleration field, δV / dt,  depends
on the local time dependence,δtV, on the non-linearity
(convective) term,  V .∇ V, and on the disipative one, ∆V.
Moreover, the behaviour of a “non-differentiable fluid” is
viscoelastic or hysteretic type.  Such a result is in agreement
with the opinion given in [15, 16, 18]: the non-differentiable
fluid can be described by Kelvin-Voight or Maxwell
rheological model with the aid of a complex quantities e.g.
the complex speed field, the complex acceleration field
and with the complex structure coefficients e.g. the
imaginary viscosity coefficient.

We note that the using of a complex quantities or a
complex structure coefficients are compatible with the
fractal structure of space-time [13, 14].

From (2) and by the operational relation
 we obtain the equation:

                (3)

If the motions of the “non-differentiable fluid” are
irrotational, i.e. Ω =  ∇ x V = 0  we can choose V of the
form:

                                                                              (4)

with φ a complex speed potential. Then, equation (3)
becomes:

                                         (5)

and more, by substituting  (4) in (5) , we have

                                                  (6)

This yield:

                                             (7)

with F(t) a function of time only. We realize that (5) have
been reduced to a single scalar relation (7), i.e. a Bernouilli-
type equation.

Let us choose φ  of the form
       (8)

Then, up to an arbitrary phase factor which may be set
to zero by a suitable choice of the phase of ψ e.g.. F(t) ≡,0,
the (7) becomes a Schrödinger type equation:

      (9)
Now, the relation

     (10)

is fixing the interaction scale and the heat transport type
respectively.

In the following, some applications of the model are
given.

Results and discussion
Heat transport through an effective thermal conductivity

For D = -iχ and ψ =ln(T / To) the (9) is reduced to a
diffusion equation in terms of the normalized temperature
field T / To, i.e.

     (11)

χ is the effective thermometric conductivity defined as

     (12)

with k the effective thermal conductivity, ρ  the “density”
of the composite, and cp the “specific heat” of the
composite. For details on the effective thermal conductivity,
density of the composite etc., see the paper [19].

Particularly, in the Hamilton and Crosser (HC) model
[20], the expression for the effective conductivity of matrix
(in our case the liquid) that contains a dispersion of
particles has the form

            (13)

In this relation kHC is the predicted thermal conducitivity
of the composition system, kf is the conductivity of the
liquid, kp is the conducitivity of the solid particles, Vp is the
particle volume fraction, and  n  is the empirical shape
factor (e.g. for spheres n = 3). Some consequences result:

- the particle size does not play a role and only the
particle shape and volume fraction affect thermal
conductivity (13). This is inconsistent with the above
mentioned experimental results [1-3], which demonstrate
that, for example, at the same volume fraction, keff is greater
for 15 nm particles than for 40 nm particles;

 - for a given volume fraction (assuming spherical
particles for simplicity), the maximum conductivity is
achieved when kp >>kf  and is given by

    (14)

which is the upper limit of the thermal transport
enhancement within the macroscopic theory. Also,
according to [4] “a closer examination of (13) shows that
particles of kp = 10kf  or greater lead to an increase of kHC
close to the limiting value given by (14); surprisingly, any
further increase of kp  has little effect on the thermal
conductivity of the composite. Physically, this behavior
arises because with significantly (10 times or more) higher
particle thermal conducitivity, the temperature across the
particle becomes essentially constant, thereby providing
the same boundary condition for the heat-flow equation
in the surrounding liquid. Because the thermal conductivity
of nearly all crystalline solids are at least ten times those
of liquids, the above analysis would suggest that the
thermal conductivity of nanofluids should be independent
of particle composition; experimentally, this is clearly not
the case. Moreover, the HC limit can be greatly exceeded,
as exemplified by measurements of thermal conducitivty
in Cu nanofluids, in which   > 10.

For an extended analysis, it is useful to introduce the
excess-thermal-conductivity-enhancement coefficient k ,
defined as

                      (15)

In the above definition, k  is simply the ratio of measured
thermal conductivity increase divided by the increase
predicted by the HC model. Consequently,  =1 indicates
agreement with the macroscopic theory, and   > 1
measure the magnitude of thermal-conductivity
enhancement.

Other models with effective thermal conductivity are
given in [21-23].
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Heat transport through the Brownian motion
For  the (9) is reduced to a

diffusion equation in terms of the normalized density field
ρ > / ρ o, i.e.

                                   (16)

In such conjecture the theory of the random movement,
i.e. the Brownian motion, is assimilated with a diffusion
process [24- 26].

Brownian motion is characterized by the particle
diffusion constant , given by the Stokes-Einstein formula

                                     (17)

where kB  is the Boltzmann constant, η is the fluid viscosity
and d  is particle diameter. We note that the relation (17) is
directly obtained in the random movement analysis.

With (17), one can estimate the effect of Brownian
motion on the thermal conductivity by comparing the time
scale of nanoparticle motion with that of heat diffusion in
the liquid. Equivalently we can compare the time required
for a particle to move by the distance equal to its size τD,
given by [4]

                                       (18)

with time required for heat to move in liquid by the same
distance Hτ 4);

                                        (19)

For water at room temperature [4], (η = 0.01 g/cm . s,
kf = 0.4W / m . K,  ρ= 1g / cm3, cp = 4.2 J / g)  and with d =
10  nm,  (18)  and  (19)  give  τD  ≈ 2  .  10-7 s and τH ≈  4  .  10-

10 s, respectively. The ratio of HD / ττ  is ≈ 500 and decreses
to ≈ 25  when the particle size is equal to the atomic size
(≈ 0.5, demonstrating that the thermal diffusion is much
faster than Brownian diffusion, even within the limits of
extremely small particles.

The above comparison demonstrates that the
movement of nanoparticles due to Brownian motion is too
slow to transport segnificant amounts of heat through a
nanofluid, a conclusion supported by the results of
molecular level simulations [24, 25].

Heat transport through liquid layering at liquid-nanoparticle
interface

Let us consider the interaction between two fractal
structures, e.g. the fluid and the nano-particle [10, 11], and
the corresponding interface. According with the SRT [13,
14], the interface dynamics at the mesoscopic scale [15,
16], h = 2mD, is described by the coupled equations set

                 (20a,b)

with ψnf, ψnp  the wave functions, Hf, Hnp  the Hamiltonians
on either side of the interface, Hf-np = const. the Hamiltonian
of the interface, h the reduced Planck constant and the
indices (f, np) refers to the fluid and nanoparticle,
respectively. The Hamiltonians Hf  correspond to the free
energy of the fluid, Hnp to the the free energy of the
nanoparticle and Hf-np  to the free energy of the interface
[11, 13, 14].

Expliciting the wave functions by the following relations:
             (21a,b)

and separating in (20a, b) the real parts from the imaginary
ones, we obtain:

              (22a-c)

where are the amplitudes and θnf, θnp the phases.
From here, with [4, 8]

                (23a-e)

it results the heat flux:
                   (24)

of amplitude JQ,M

   (25)

and phase difference θ

                            (26a,b)

with Tf, Tnp the absolute temperatures, ∆T temperature
difference on the interface, ε the elementary amount of
energy transferred through the interface [9] and kB the
Boltzman’s constant.

For ∆T=0, relation (26a, b) reproduces a d.c. Josephson
effect of thermal type, while for  ∆T≠ 0 an a.c. Josephson
effect of thermal type, i.e. oscillations of the heat flux with
the pulsation,

                                      (27)

In this last case, let us consider the dependency ∆T =
T(t)  in the form

            (28a,b)

We notice that any time-dependent signal, e.g. (28a,b)
admits locally a Fourier discrete decomposition [27]. This
means that the previous results are of maximum generality.

Substituting the relation (28a,b) into (26a,b) and
integrating it, we obtain the time dependence of the phase
difference:

    (29a,b)

With relation (29a,b), the expression (24) of the heat
flux becomes

(30)
where Jn is the n-order Bessel function and φo a constant
of integration.

When the pulsation Ωn = kBTo / h satisfies the relation
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Ωn =nΩ =, n=1,2,3,...,  the time-average of JQ  ≈ 〈JQ(t)〉
differs from zero, i.e. there is a continuous component of
the heat flux of the form:

                                       (31)

From relation (31) peaks of the continuous heat flux
result for

            (32a-d)

and consequently a negative differential thermal
conductance (dJQ,C / dTo < 0). Moreover, from equation (31)
the heat flux of the pick n can vary continuously in the
range at constant
temperatureTn, and the phase varies in the range [-π / 2,
+π / 2]. This means that in the interface, the heat can be
generated or absorbed. When the interface generates the
heat, the increase of the thermal conductivity of the
noanofluid can be explained.

In the general cases [4], the heat transfer in nanofluids
is non-linear, while, in the linear approximation i.e. sin ∆θ≈
∆θ ) = kBτ∆T / h, the standard form of heat transfer results,

(33a,b)

with G the thermal conductance and ∆τ a characteristic
time [1-4].

Moreover, by an extension of the model to heat transport
in an one-dimensional wire, the relation (33b) with the
restrictions [15, 16, 28, 29] ε  = kBT / 3, 8Hf-npρτ / h = 1
implies the quantum thermal conductance of electrons
[30],Ge = π2kBT / 3h.

Conclusions
 A mathematical model of the heat transport in

nanofluids using the scale relativity  theory in the
topological dimension DT = 2 is established.  By means of
a scale covariance form of the Newton’s equation, a
generalized Navier-Stokes type equation with an imaginary
viscosity coefficient is obtained. Then, the macroscopic
behaviour of the nanofluids is viscoelastic as or hysteretic
type.

A Schrödinger type equation is obtained as an
irrotational movement of the nanoparticles.

Some applications of the model are given as the heat
transport through an effective thermal conductivity, by
Brownian motion or by liquid layering at liquid-nanoparticle
interface.  The heat transport in nanofluids is performed
through an unique mechanism, the above standard
sequences mentioned being imposed by the interaction
scales.

 By an extension of the model to heat transport in an
one-dimensional wire, the quantum thermal conductance
of electrons is given.
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